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A symmetryless model of nonlinear first-order differential equations, obtained 
by perturbing a known model of five-mode truncated Navier-Stokes equations, 
is studied. Some interesting phenomena, such as the existence of an infinite 
sequence of bifurcations in a very narrow range of the parameter and the 
simultaneous presence of a strange attractor either with two fixed attracting 
points or with a periodic attracting orbit, are shown. Furthermore, two new 
sequences of period doubling bifurcations are found in the unperturbed model. 
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1. I N T R O D U C T I O N  

In  recent years much effort has been devoted to the a t tempt  to give a 
mathematical  interpretation to the phenomenon  of turbulence in fluids. A 
relevant contr ibution to the progress in this line of research has certainly 
come f rom a large number  of numerical  studies on simple models of 
nonlinear  evolution equations, which exhibit a transition to a stochastic 
behavior  when one or more parameters  go beyond  certain critical values. 

The Lorenz system, (1) consisting of three first-order ordinary differen- 
tial equations representing a flow in three-dimensional space, and the 
H r n o n  mapping,  (2) t ransforming the plane into itself, are surely the best 
k n o w n  models .  Fo r  a suff icient ly detai led knowledge  of  the phe-  
nomenology  of these models, several numerical  studies were necessary. This 
emphasizes the importance of numerical  work and at the same time testifies 
to the fact that  any numerical  investigation, no matter  how accurate, can in 
general explain only part  of the phenomenology  of a model.  
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472 Baive and Franceschini 

A valid justification of the incompleteness of numerical investigations 
has to be found in the fact that the phenomenology of the model is often so 
varied and complicated that it cannot be completely defined. Two typical 
examples of this fact are represented just by the Lorenz and H6non models. 

Another factor must be considered: some phenomena, sometimes t 
relevant, may occur in such narrow ranges of the parameter as to make all 
the investigations vain. 

There are, however, other factors concurring to make numerical stud- 
ies partial and incomplete: our experience is often too limited with respect 
to the many situations which may occur and the difficulty in adjusting 
effective and rigorous computing algorithms. 

In this paper we intend to provide further support to the above 
considerations by producing the results related to the study of an interest- 
ing system of nonlinear differential equations. This system exhibits some 
phenomena which appear very significant, such as the existence of an 
infinite sequence of bifurcations in a parameter interval smaller than 0.001 
and the simultaneous occurrence (hysteresis) of a strange attractor either 
with two stable fixed points or with a stable closed orbit. 

The model we study here is obtained by perturbing a known model of 
five-mode *runcated Navier-Stokes equations, (3'4) exhibiting a rather com- 
plicated phenomenology, which is, however, justified and simplified by the 
occurrence of a symmetry group. The role of these symmetries appears so 
significant that it is natural to wonder what happens if they are in some 
way broken. This can be done by adding two perturbative terms r I and r 5 
to the first and the fifth equations, respectively) So, if r I and r5 are both 
different from zero, we obtain the following symmetryless system: 

:t~ = -2x~  + 4x2x 3 + 4x4x  5 + r~ 

2 2=  --9x 2 + 3 x l x  3 

23 = - 5 x  3 -  7 x l x  2 + r (1) 

-~4 = - - 5 X 4 - -  XlX5 

-~5 = -- X5 -- 3XlX4 + r5 

If the unperturbed system (r I - - r  s = 0) is structurally stable, as it 
appears logical to suppose, the phenomenology of (1) must move with 
continuity and gradualness from that seen in Ref. 3 and 4, when r 1 and r s 
are slightly and continuously increased from zero. In other words, for each 
pair (rl ,r5) we have a one-parameter family of differential equations 

ZThis is the same as assuming an external force I (the periodic volume force on the fluid) also 
acting on the modes k I and k 5. 
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= F(x, r), whose behavior should be qualitatively analogous to that of the 
one-parameter  families corresponding to "near"  pairs (r'l, Fs). 

Our purpose here is not to study system (1) as a perturbation of the 
known model, i.e., with r 1 and r 5 both varying in a neighborhood of zero. 
We intend simply to study a symmetryless model obtained from (1) by 
assigning for r I and r 5 two values large enough to cause considerable 
changes in the phenomenology of the unperturbed system. As suggested by 
some preliminary experiments, we assume r I = r 5 = 1. However, we will 
refer in the following to this particular model as the perturbed one. 

2. THE UNPERTURBED MODEL 

Before we describe the numerical results of our study on the perturbed 
model, it seems useful to report a concise summary of the phenomenology 
of the unperturbed one, i.e., of the system 

xl = --2Xl + 4X2X3 + 4x4x5 

~2 = -- 9X2 + 3X]X3 

X 3  = - -  5 X 3  - -  7XlX2 + r 

X 4  = - -  5 X 4  - -  XlX5 

X5 = --X5 -- 3XlX4 

(2) 

In this way we hope to facilitate the understanding of the perturbed 
model which will be described later on. We hope also to provide the 
elements necessary to point out the differences in behavior between the two 
models. Therefore, we report from Refs. 3 and 4, as briefly as possible, the 
known results on model (2), with the addition of some new very recently 
found ones. 3 

(a) For 0 < r < R~ = 5 r  3 there is only one fixed point P0, which is 
stable and globally attracting. 

(b) For R; < r < R~ = ~ ~ there are two other stable attractive fixed 
points P~ bifurcated at r = R; from P0, as it has become unstable (a is the 
sign of the coordinate x j). 

t t ~  (c) For R 2 < r < R 3 -22 .8544  there are four more stable attracting 
stationary solutions P~# (fl  represents the sign of the coordinate xs). The 
points P~ + and P~_ bifurcate from P~ at r - R~ as P~ becomes unstable. 

3To better connect the phenomenologies of the two models, it is convenient to introduce new 
notations for the different sequences of periodic orbits (with respect to the ones of Ref. 4). 

4Most of the critical values R/, i/> 3, are taken from Ref. 4 rounded off at the third decimal 
figure. 
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(d) For r = R~ each point P~a gives rise, via a direct Hopf bifurcation, 
to  a closed orbit % 0  which is stable and attractive. The four orbits % 0  
are symmetric (in virtue of the symmetries of the model) and then they 
have the same identical behavior as r increases. 

Starting from the % 0  four identical sequences % i  of symmetric 
periodic orbits take place in connection with an infinite sequence of 
bifurcations, which exhausts itself for r = R; ~ 28.669. At the ith bifurca- 
tion, i = 0, 1 , . . . ,  each orbit % i  becomes unstable because a real eigen, 
value of the Liapunov matrix of the Poincar6 map crosses the unit circle 
through - 1, giving rise to the orbit nci+ l J ~  , which is stable and attractive and 
has a doubled period. 

(e) For r = R~--28.663 four more symmetric periodic orbits arise, 
which are stable and attracting. They have a spatial structure different from 
that of the %"~B" In fact, while each %~r winds up around the only fixed 
point P~ ,  each of these new orbits winds up around two points, making 
three loops around one point, then two around the other point, and so on. 
More precisely we have the orbit ~0+, which goes twice around P_ + and 
three times around P§ § the orbit -o 6g+, which makes three loops around 
P § and two around P§ +, the orbit ~o ,  with two loops around P _  and 
three around P§ _, and the orbit ~o making the symmetric of ~0_. With 
regard to the four orbits ~ and ~ it is useful to remark that two of them 
are entirely contained in the half-space x 5 > 0 and the other two in x5 < 0: 
the sign fl just refers to that half-space. 

A second sequence of infinite period doubling bifurcations, accumulat- 
ing at r = R ~ 2 8 . 7 2 0 ,  givesrise to four more identical sequences of 
periodic orbits 6g'+, ~'+, ~'_, 6g'_, i --- 0, 1 , . . . ,  with the same characteris- 
tics of the sequences %~.  

(f) For 28.7033 ~ R~ < r < R4 ----- 28.7068, simultaneously to the four 
orbits ~l (i.e., 691+ -1 ~1_, ~1_ , d~+, ) four extra sequences of symmetric orbits 
~i+, ~ + ,  ~ i ,  ~3/_, i =  0, 1 . . . . .  are present. Each of them has its own 
stability range but a very small basin of attraction. On the spatial character- 
istics of the 6~,s, the same considerations made for the ~'s hold with one 
difference: each orbit ~ makes three loops around a point and then only 
one around the other point (Fig. 1). 

(g) For R~ < r < R ~ 3 0 . 1 8 9  two symmetric strange attractors are 
present, one located in x 5 > 0 and the other in x 5 < 0. Every randomly 
chosen initial point tends to describe stochastic trajectories on one of these 
two attractors. 

(h) At r = R; four new symmetric attractive closed orbits C ~ , ~o,  C0, 
~0_ appear. They have spatial properties completely analogous to those of 
the orbits ~ and ~ ,  winding up twice around one point and then once 
around the other point (Fig. 2). Also the orbits C ~ originate four identical 
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Fig. 1, 
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sequences ~i, because of another sequence of infinite period doubling 
bifurcations, accumulating at r --- R~0 ~ 30.543. 

(i) For r = R~0 the two strange attractors, which disappeared at r = R~ 
owing to the arising of the stable C~ reappear. So, for R~0 < r < R ll 
33.439, the motion is stochastic again. 

(j) For r >t R~ any trajectory rapidly becomes periodic because of two 
stable attracting closed orbits F# (/3 has the above meaning). 

The whole phenomenology is graphically summarized in Fig. 3. A brief 
glance at the picture is sufficient to show how the behavior of the unper- 
turbed model is complicated, even if simplified by the occurrence of 
symmetries. 
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Fig. 3. Graphical summary of the phenomenology exhibited by the unperturbed model as r 
varies. A sequence of spots is used to represent a stable fixed point, a continuous thick line is 
used for a stable periodic orbit, a set of stars for turbulent regime. The critical points R/, here 
indicated by their subscript and represented as equispaced, have the following values: 

R~ = 5~/-~, R~ = ~ / ~ ,  R~22.854,  R~28.663,  R~28.669,  R~28.7033,  R-~28,7068, 

R~ ~ 28.720, R~ ~ 30.189, R ~0 ~ 30.543, R ~ ~ 33.439. 
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Table I. Bifurcation Points 
of the Sequences ~i and U 

Oo 28.7033 30.189 
Pl 28.7055 30.406 
02 28.70652 30.5191 
P3 28.70674 30.5378 
04 - -  30.5418 

Ooo 28.7068 30.5"43 

Finally, we focus our attention a little on the orbits ~ and C. They had 
not been found in Refs. 3 and 4. For this reason it appears not useless to 
complete the phenomenology of the unperturbed model by computing with 
good accuracy some of the first bifurcation points Pi of the two sequences, 
p,. being the value of r for which the ith orbit arises. In Table I we list the 
values Pi we have calculated, also including a rough approximation p~ for 
the accumulation point of each sequence. The large enough period of the 
orbits ~0 and G O and the consequent elevated costs necessary to obtain 
accurate results, have considerably limited our computations. 

The fact that the ~ ' s  and C's had not been previously found, can be 
easily explained. As regards the orbits ~ ,  their very narrow "life" r interval 
and their very small basin of attraction (in connection to the quite large one 
of the coexistent orbits ~l) make them impossible to be found. In the 
following we will see how, just through the perturbations adduced on the 
model, range of existence and basin of attraction can be considerably 
enlarged in such a way that the orbits can be found. Differently from the 

's, the orbits C are present in a sufficiently large r interval and attract any 
randomly chosen initial point. Therefore, the reason why they had not been 
found in Refs. 3 and 4 is very simple: no solution of (2) was studied for r 
belonging to [R6, R[0 ]. 

. THE PERTURBED MODEL 

Consider the system of equations 

-'~1 = - - 2 X l  + 4x2x3 + 4 x 4 x 5  + 1 

2 2 = --9x 2 + 3 X l X  3 

"~3 = --5X3 -- 7XlX2 + r 

2 4 = _ 5 x  4 - x l x  5 

"~5 = - -X5  -- 3XlX4 + 1 

(3) 
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A preliminary consideration simplifies the exposition of the phenomenol- 
ogy of this model. Each attractor of (3) corresponds to an analogous one 
exhibited by the unperturbed model, as was to be expected by the consider- 
ations made at the end of the Introduction. Such a fact is very useful 
because it allows us to use the same notation for describing the behavior of 
the two models, which thus become immediately comparable. 

Fixed Points 

The fixed points of system (3) have coordinates 

( rxl 3r --Xl 5 _ )  
Xl '7X~+15 '7X 2 + 1 5 ' 5 - 3 x  2 ' 5 - 3 x  2 

where x I satisfies the following equation of the ninth degree: 

(2x I - 1)(7x 2 + 15)2(5- 3x21) z- 12rx l (5 -  3x12)2+ 20xl(7x ~ + 15) 2--- 0 

(4) 

A numerical study of the real solutions of equation (4), each of them 
yielding a fixed point for the system (3), gives the following results: 

(i) For 0 < r < R 1 ~--10.8661 there is only one real solution, corre- 
sponding to the fixed point P+ +. 

(ii) For R 1 < r < R2 "~ 16.6024 there are three real solutions for equa- 
tion (4): the fixed points P0 and P + are added to P+ +. 

(iii) For R 2 <~ r < R 5 ~--20.2104 the stationary solutions are five: the 
three previous ones plus P+ and P + .  

(iv) For r/> R 5 the system (3) has seven fixed points: in addition to 
P++,  P0, P - + ,  P+,  P + - ,  we have P_ and P .  

It is easy to verify that, whereas P0, P+,  and P are always unstable, 
P++ ,  P +, P + _ ,  and P__  are stable and attractive up to r =  R 4 ~  
19 .7996 ,  R 3 ~" 19.4636, R13 ' ~  25.9272, RI4~- - -26 .5689 ,  respectively. At each 
of these four critical points a direct Hopf bifurcation takes place. In 
consequence of such a bifurcation a stable attracting closed orbit %.~ B 
comes out of each point P-t~" 

An interesting remark: whereas the point P+ + exists for every r, the 
other six ones arise in pairs, each pair having its own origin and consisting 
of a stable point and an unstable one. This way of arising, which is 
different from th'at of the fixed point in the unperturbed model, is clearly 
due to the absence of symmetries in the system (3). 
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Table II. Bifurcation Points of the Sequences %~fl 

P0 19.7995 19.4636 25 .9272  26.5688 
p] 23.270 22.273 33.56 34.42 
P2 23.388 22.380 33.866 34.742 
P3 23.404 22.394 33.899 34.774 

p~ 23.409 22.398 33.908 34J82 

Sequences of Infinite Periodic Orbits 

Each orbit %~~ which originates from the point P~B becomes unstable 
with an eigenvalue - 1  bifurcating into a new stable periodic orbit % ~  
with double period. The phenomenon of period doubling bifurcations 
continues also with %~,  giving rise in this manner to four different 
sequences Of orbits %'~B" Each sequence takes place in its own r interval 
and with its own sequence of bifurcation points {Pi), i = 0, 1 . . . . .  Pi being 
the critical value of r for which the orbit H i arises. 

Table II shows the values Pi for the four sequences %~ ,  by including 
only the first three ones for what concerns the period doubling bifurca- 
tions, s and, in addition, a rough approximation p~ for the value of r for 
which the sequence exhausts itself. Such an approximation [we suggest 
keeping in mind Feigenbaum's theory (see Ref. 4)] is useful because it 
permits for each sequence %/B a definition of its "life" interval. In fact, by 
reading from Table II, we can assume R6-----22.398, R9-----23.409, Rls 
33.908, RI9 ~ 34.782 and then have the interval (R4, R9) for the sequence 
%++, (R3,R6) for %i_ +, (Rl3,Rls) for %i+_, (RI4, Rl9) for i 

As is evident from Table II, the four sequences %~p describe here four 
different although similar stories. We recall that in the unperturbed model 
the four stories are perfectly identical. 

Now turn our attention to the orbits ~i, ~ ; ,  C i. If one studies the 
asymptotic behavior of the solutions of system (3) as r varies and with 
several random initial data, it is easy to observe the presence of three 
different sequences of attracting periodic orbits. These can be immediately 
identified, thanks to their spatial structure, with the sequences U ~ / ~i 

SSince the phenomenon of sequences of infinite bifurcations has already been studied in great 
detail in Ref. 4, it seems sufficient to consider here only three period doubling bifurcations. 
Also concerning the critical points Oi, i = 1, 2, 3, it appears useless to compute them with 
higher precision. 
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By recalling that in the unperturbed model four sequences ~i, four 
g~ 's, and four ~/'s are present, the question arises whether the remaining 
nine are still present or not. To answer this question we have adopted 
different search techniques. Taking the orbits of model (2) as a starting 
point, we have tried to follow them when the parameters r~ and r 5 are 
slightly and continuously increased from zero, either simultaneously or 
separately. There was the hope of being able to follow the orbits up to 
r l = r 5  = 1. 

Our attempt has met with success as far as the sequences ~%, ~_ ,  and 
~,'- are concerned. To give an idea of the difficulties in obtaining such a 
result, it is sufficient to say that the orbit ~0_ is now present with a very 
small stability range: about 0.0006. In the unperturbed model this range is 
about 0.03. 

On the contrary, all our efforts to find the sequences ~+, +, +, _, 
C+, C'_ have proved useless. They are stable in an interval which rapidly 
becomes smaller and sensibly shifts with respect to r. Very soon it becomes 
impossible to follow the orbits as r 1 and r 5 increase. For this reason we 
cannot establish whether these sequences are still present in a very small 
range or not any more. 

Table III collects, analogously to Table II, some numerical data 
relative to the sequences we have found. Also in this case it is useful  to 
define their "life" interval through the critical values 0o and O~. Letting 
R7~22.972,  R8~23.006,  R10~23.488, Rll ----- 23.867, R16~34.411, RI7 w 
34.5892, R18 ~ 34.5900, Rz0 ~ 34.849, R21 m_ 35.497, R22 ~ 35.596, R23 
37.571, R24"~41.022, we have the following ranges: (Rv,R8) for the se- 

" ,  ~ _ ,  ( R l v , R I 8 )  for ~ i ,  quence 6~+, (Rlo, RH) for U+ (R16,R20) for i 
(R21, R22 ) for ~ / ,  (R23 , R24 ) for U_. 

For precision's sake a remark must be made concerning the orbits ~ .  
Their presence in the unperturbed model was unknown before studying 
system (3) and finding a periodic orbit (the orbit ~0_ ) with spatial charac- 
teristics different from those of the known orbits ~ and E. Following this 

Table III. Bifurcation Points of the Sequences ~ ,  ~,+-, ~ _ ,  ~i_, ~_,  C ~ i  

P0 22.972 23.488 34.411 34.5892 35.497 37.571 
01 22.989 23.835 34.69 34.5898 35.571 40.924 
P2 23.002 23.862 34.824 - -  35.591 4t.004 
03 - -  23.866 34.843 - -  35.595 41.018 

O~ 23.006 23.867 34.849 34.5900 35.596 41.022 
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new orbit as the parameters r 1 and r 5 both decrease from one up to zero, we 
have found the orbits ~ also in the unperturbed model. 

Behavior at Intermediate and High r Regimes 

Exactly as in model (2), if r is sufficiently high, any randomly chosen 
initial point tends to a periodic motion. This is due to the presence of two 
stable attracting closed orbits F+ (in x 5 > 0) and F (in x 5 < 0) existing for 
r/> Rl2 ~" 24.57 and r/> R25 " 49.99, respectively. Such orbits, whose exis- 
tence is easily verifiable, remain very likely also for r tending to infinity. 
We verified their existence up to r = 500, when they appear very enlarged 
and with a period much smaller than the initial one. 

Consider now the intervals (R9, Rio), (R 1 l, R12), (R2o, R21), (R22, R23) 
and (R24, R25 ). For values of r belonging to one of these intervals, there are 
solutions which tend asymptotically to an attractor having all the character- 
istics of "strange attractor." In fact the trajectories described by such 
solutions appear completely random, are condensed in a well-circumscribed 
region of the space, and sensitively depend on initial condition. 

The behavior in the intervals (R9,RI2) and (R20,R25) essentially re- 
peats that of the unperturbed model in the interval (R~, R~). The strange 
attractor, approached through a cascade of period doubling bifurcations, 
disappears owing to the arising of a stable closed orbit on the same 
invariant manifold containing it. A new sequence of period doubling 
bifurcations reinstates the strange attractor on the manifold. It definitively 
disappears when a stable periodic orbit I" appears. A quite analogous 
phenomenology is exhibited by the Lorenz model too. (5) 

A remarkable fact is represented by the phenomena of hysteresis still 
taking place in the five intervals considered above. In the two first ones we 
have the simultaneous occurrence of a strange attractor, located in the 
half-space x 5 > 0, with the two stable fixed points P + _  and P _, located 
in x 5 < 0. In the last three intervals the strange attractor, which is in x 5 < 0, 
exists contemporarily to the stable orbit F'+, localized in x 5 > 0. It is easy 
to verify that, if we take several random initial points, no matter how r is 
chosen belonging to one of the five intervals, some solutions tend to 
turbulent motion, the others to laminar one. 

4. CONCLUSION 

In this paper we have presented the numerical results of our study on a 
system of nonlinear differential equations. Such a system is obtained by 
perturbing a known model of five-truncated Navier-Stokes equations in 
order to break all its symmetries. The perturbed model substantially repeats 
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all the most significant behaviors of the unperturbed one. Moreover, it 
presents some new phenomena, which enrich its already varied phenome- 
nology. 

Some remarks on the effects of symmetry breaking appear interesting. 
First of all the occurrence of the symmetries caused, after the arising of 

the four symmetric points P ~  at r = R~, the origin of four perfectly 
identical stories. Then they were reduced to two as the two strange 
attractors appeared. The breaking of all the symmetries causes the four 
stories, although similar, to differ. 

A second consideration concerns the phenomenology in more general 
terms: in the perturbed model it develops in a different way in the two 
half-spaces x 5 > 0 and x 5 < 0. As can be immediately verified looking at 
the summary of Fig. 4, the phenomenology in x 5 > 0 undergoes a contrac- 
tion (with respect to the parameter r, obviously), whereas in x 5 < 0 there is 
an evident dilatation. Owing to this, special cases of hysteresis take place. 
In fact in the intervals (R9, Rio ) and (RI2,R]3) a strange attractor and two 
stable fixed points are present at the same time, while in (R20,R20, 
(R22,R23), and (R24,R25) there are a strange attractor and an attractive 
closed orbit. This fact, meaning that for the same value of the parameter a 
solution may tend either to stochastic motion or to laminar one depending 
on initial conditions, appears to be very interesting. As far as we are 
concerned, it is the first time that such a phenomenon is met in studying 
dissipative systems of differential equations, even if it is known to be 
present in the Hrnon  model. (6) 

Finally, we consider the two facts which, in our opinion, represent the 
more interesting effects of symmetry breaking. The sequence of periodic 
orbits ~ ' ,  that in the unperturbed model develops in a r interval a little 
larger than 0.05, in the perturbed one has an existence range less than 
0.001. On the contrary, the sequence ~ _  changes from a "life" interval less 
than 0.004 to one larger than 0.43. Therefore, while in the former case the 
perturbations cause a contraction by a factor smaller than 1/50, in the 
latter one the effect is a dilatation by a factor larger than 100! By this two 
considerations immediately follow: On the one hand we find a confirma- 
tion of the fact that some attractors, in particular stable periodic orbits, 
sometimes even important, can take place in such small intervals as to be 
"invisible." On the other hand, a possible way to discover such attractors is 
suggested: through suitable perturbations their range of existence and basin 
of attraction can be enlarged as much as necessary to find them. 
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